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I. INTRODUCTION

Considered here is the theoretical modeling of turbulent
mixing at density discontinuities in nonsteady compressible
flows. It is well known that if a density discontinuity (or
a strong density gradient) occurs in a pressure gradient of
the opposite sign, then the flow field is hydrodynamically
unstable in the Rayleigh-Taylor sense (Taylor, 1950).1 Small
perturbations occurring in such a region will amplify with
time, and if the perturbations become large enough, they can
lead to a local breakdown in the well-ordered flow; i.e.,
they can lead to turbulence.

One of the more interesting examples of density gradients
working against pressure gradients to cause instabilities
occurs in blast waves driven by solid high explosives (HE).*
After the detonation wave breaks out of the charge, the HE
combustion gases expand to a high velocity ("-6 km/s), pushing
an air shock ahead. From one-dimensional inviscid calcula-
tions of this problem (Brode, 1957),2 we know that a positive
pressure gradient is formed throughout the flow field. Such
calculations also indicate that there is a large density jump
(PHE/Pair can be as large as 70) across the contact surface.
However, from high-speed photography of HE experiments, we
know that this contact surface (which theoretically should be
smooth) actually develops an irregular shape indicating the
growth of instabilities. Evidence of mixing at the contact
surface can be inferred from test results which show that the
HE gases react with the shocked ambient gases and release

I

Similar gradients can occur in "shock-tube-type" flows driven
by gases at very larqe initial densities.
1. Sir G. I. Taylor (1950), "Instability of Liquid Surfaces

when Accelerated in a Direction Perpendicular to Their
Plane," Proceedings of the Royal Society (London), AdC'1,
pp. 192-196.

2. H. L. Brode (1957), A Calculation of the Blast Wave from
a Spherical Charge of TNT, Rand Corporation, RN-1965.
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heat (i.e., afterburn) if the awbient gases contain oxygen
(Matle, 1959# and Filler, 1956)304. Since this heat release
can be of the same order as the energy released by the detona-
tion wave (e.g., for TNT postdetonation energy release is
about 2.5 times the detonation energy), it will affect the
blast wave flow field and must be taken into account for
accurate numerical simulations of such flows.

This report describes the numerical work that RDA has
performed to simulate the kinematics* of the turbulent mixing
associated with such HE-driven blast waves. A k-c turbulence
model was programmed and combined with RDA's minimal-diffusion
Flux-Corrected Transport (FCT) module which solves the gas
dynamic conservation laws on a sliding grid. Source terms

f were included in the k-e equations to model the above-
described Rayleigh-Taylor mechanism to generate turbulence.
The governing equations are described in Section II. Prelim-
inary numerical studies (as described in Section III) indicate
that this model does, indeed, generate turbulent kinetic
energy at the HE/air interface of HE-driven blast waves.
Conclusions and recommendations are offered in Section IV.

1

Energetics (i.e., heat release) was neglected for the
preliminary work.

3. C. C. Matle (1959), The Contribution of Afterburning- to
the Air Blast from Explosives, NAVORD Report 6234.

4. W. S. Filler (1956), "Post-Detonation Pressure and Thermal
Studies of Solid Explosives in a Closed Chamber," Sixth
(Int) Symposium on Combustion, pp. 648-657.

8



!I. FORMULATION

The time evolution of the mean flow is governed by the
conservation of mass, momentum and energy which may be
written as follows for point (j=2), line (j=l), or plane
(j=O) symmetric flow:

B0 + r3 (r Pu) 0()

Br=

(pu) + - r (rpu 2 , (p + pk) (2)

(pE) + (rpuE) - ru p + pk

(3)

+ a 1 jh + 1 A k
r + r T \ t,h Dr at,k r/

where mass-averaged properties of the mixture are

o a densitv
u - velocity
E - total energy m e + + k
e - internal energy 2

•",.i •- pressure

- rate of energy release per unit volume
h - enthalpy

and the turbulence parameters are

k = turbulence kinetic energy per unit mass
°T,. w turbulent Prandtl number f~r the variable 8
PT = total viscosity - ut + CP pk /c
ve= molecular viscosity

For a mixture of N component gases, one must solve N-i species
transport equations in addition to the mass conservation law
for T-he mixture (Eq. 1). The species transport equations have
the fortn

Pf • ± (rfr irer + (4
r r (4)
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where • = mass-averaged, mass fraction of component a
Sp /p (while Z f = 1)

a

S= rate of creation of component a (with E S 0)
a

As shown by Issa (1980),5 a one-dimensional k-c turbulence
model can be used to simulate turbulent mixing driven by the
Rayleigh-Taylor mechanism. The transport equations for the
turbulence kinetic energy, k, and the turbulence kinetic
energy dissipation rate, e, acquire the following form:

tpk) +~ ur(r u) t kk) + G - (5)L I
(PC) + .L. .r (r~pcu) '.r ( r t"- + C1 G /k 2

(6)
where

2 k a lit •p
G -" -yr (r u) - C rr • r (7)

d 3

Here G represents a source/sink for turbulence kinetic energy.
The first term in C; is proportional to the flow divergence
anmd tends to kill turbulence in expanding flows. The second
term is proportional to the product of the meani pressure and
density .radients. When these gradients have opposite signs,
then G cart become positive. As will be shown, the pressure
and density gradients do have such opposite signs near the
contact surface of an liE-driven blast wave and turbulence
indeed grows there. in other regions of the flow (e.g., at
the shocks and in the rarefaction wave), the pressure and
density gradients have similar signs and turbulence is
suppressed.

5. R. 1. .ssa (1980), Modeling of Turbulent Mixing at
Density, Dis continuities in Nonsteady Compressible Flows,
R & D Associates, RDA-TR-107605-001.
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III. NUMERICAL STUDIES

The k-c turbulence equations described in the previous
section were programmed on the computer and incorporated
into the one-dimensional hydrocode, RDAFCT. This code uses
the FCT module labeled JPBFCT 6 to solve general conservation
laws on a sliding grid:

f fwdA - w(u'-u') - ;t+cdA (8)

6A(t) , tA(t)

where w i 1, pE, pf, etc.) and the grid motion satisfies
dA(t) = (t)dA(t). The module is called successively for each
conservation equation (i.e., Eqs. (1) to (6)) to advance the
flow field one time step. NRL's newest transport, diffusion
and antidiffusion coefficients are employed to give sixth-order
phase and fourth-order amirpiitude properties for the numerical
aigori tiol.

,1. Initial co ditiOns--As a test problem, we chose to
simulate t•he-volution of -he flow field associated with the
detonati)on of a 1-11b spherieal :harkle of I'lix-9404 in air.
Predetonation cotditions for the vharge were

R C 1.6.8973 cm
0o1.84 g,/ýtn3

while the ambienc air conditions were takevn as

P 1. .01325 X 106 dy/cm'
oa• 1.22.5 X 10- )" (icm3

T 208.40X

It wan as!,umcd that the charge was conter-delzonated. Initial
conditiow, for tiio rumerical calculations wore taken at the
instant the dkt iat. on wav- reached the charge radius. It
wa3 assumed that the flow field corres|pondI.u to th1at of anl
ideal. Chapman-Jouquot (CJ) detonation wave: this field was
obtained from subroutine CJDET which provides the similarity
solution for any given explotive (Kuhl, 19,8).7

6.Y. .Piloris (1976), Fuxx-Corrected Transvort Mtodules for
Solving Generalized Continuity Fations, Naval Research

7. A. L. Ruhl, M. R. Seizew (19Th), An a _of Ideal, Strong,
Chaipa.-Jouquot Detonations, TRW Report 78.4735.9-13.
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b. Eguation-of-state--The detonation products were
modeled by the Jones-Wilkins-Lee (JWL) equation-of-state
(Dobratz, 1974)8 which provides the pressure as a function
of density and internal energy in the form

p(p,e) = A exp(-RlPo/p)

+ B p exp(-R P /p) + wpe (9)

(1RP 20o

The JWL parameters for PBX-9404 are

A = 8.545 Mbars
B = 0.20493 Mbars
R1 = 4.60
R2 = 1.35
W = -1 = 0.25

while the CJ detonation parameters for this explosive are
2

PCJ = o WCJ /(r+l) = 370 kbars

S= PO (F+l)/iF 2.485 g/cm3

W, WCj = 8.8 km/s

Uc = W~/(r+I) =2.28 km/s
iqcJ = Eo/Po= 5.543 x 100 erg/g

r = 2.85
+12 2 10

q~ 1 2 u 8.142 x 10 erg/g

Local thermodynamic equilibrium was assumed for the air. Thp
pressure was related to the density and internal energy by anj effective gamma:

p = (ye-1) pe (10)

where Ye = Y,(p,e) was obtained from a table-lookup subroutine
which uses Gilmore's data for real air (Gilmore, 1955).9 Two
gas species were considered: air and detonation products.
Computational cells containing air were initialized with f=0,
while cells containing detonation products were initialized
with f=l. A transport equation was then included for the
species fraction f. In the present nonreactive case, f served

8. B. Dobratz (1974), Properties of Chemical Explosives
and Explosive Simulants, Lawrence Livermore Laboratory
Report UCRL-51319 Rev. 1.

9. F. R. Gilmore (1955), Equilibrium Composition and Thermo-
dynamic Properties of Air to 240000K, Rand Report RM-1543.
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simply as a flag to discriminate which cells contained air and
which cells contained HE. Pressures in mi.xcd cells (where
0.i<f<0.9) were blended according to Dalton's law. For the
present study, heat release due to turbulent mixing near the
HE/air interface was neglected (SO=0).

c. Results--As a baseline, we first performed an inviscid
calculation of this HE-driven blast wave (i.e., k=E=pTp0O).
We found it necessary to use very fine zoning for this problem.
The grid spacing was initialized as one tenth of one percent of
the shock radius (A/RS=.001) in the outer region of the charge
(0.08<r/RS<l.0) yielding 200 cells, and then allowed to
increase according to an interest rate formula (0<r/RS<0.8)
over 50 cells, with a grand total of 250 cells inside the
charge. The cell containing the primary or outer shock front
was moved with a velocity about equal to the instantaneous
shock velocity, ws, so that this shock remained approximately
fixed in the grid. Cell interfaces inside the shock were
assigned velocities linearly proportional to the radius:

(u ) r. (31gsi+½ i+½/Rs
Note that this grid law produces a linear dilation of the
grid, and hence preserves the initial mesh space distribu-
tion--a very useful attribute for this case. It keeps the
cells packed where all the action is--near the contact surface
and shock front!

Figures 1-8 show the inviscid flow field spatial distri-
butions as calculated for this HE-driven blast wave at various
instants in time, starting from the CJ detonation flow field
(cycle 0) out at a point in time where the air shock has
reached about two charge radii (cycle 800). Included near
the bottom of each figure is tile mesh distribution for the
last displayed time. Note in particular the density distri-
butions of Figure 1 which show a primary shock (Si), followed
by a contact surface (CS), and then a secondary shock (S2).
The latter is an inward-facing shock that is being swept
outward by the supersonic flow. At later times, this
secondary shock starts to move inward and eventually implodes.

Next, a turbulence calculition was performed. Initial
conditions were taken as the flow field at the end on the
aforementioned inviscid calculation for the following

e At this point the three discontinuities had
separated from each other and were well
resolved on the mesh.

- This allowed an acc irate calculation of the
pressure and density gradients which fed into
the turbulence source term, G.

13
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The values of the k-e model parameters were taken as those
established from turbulent shear flow

C1  = 1.44
C2 = 1.92
of ' = 1.0 for 8 h,k,f
CT,e = 1.3

while the viscosity coefficient, C,, and the Rayleigh-Taylor
coefficient, C3 , were assumed to be:

CP = 0.009
C3 = 1.0

Figures 9 through 19 give the evolution of the flow field
at 100 and 200 cycles after the turbulence terms were turned
on. These figures show a narrow region of the flow field in
the vicinity of the contact surface. Consider in particular
Figures 17, 18 and 19 which depict the calculated turbulent
kinetic energy, k, dissipation rate, c, and total viscosity,
PT- Comparing these parameters with the density distribution
shows that the turbulent kinetic energy grows rapidly in
the vicinity of the contact surface and nowhere else. After
200 cycles, k%5 x 108 erg/g while internal and kinetic
energies are greater than 1010 erg/g. Note that the dissi-
pation rate is also growing; hence, the evolution of the
turbulence kinetic energy will depend on the delicate balance
between the generation terms and the decay terms. These, in
turn, depend on the particular values chosen for C3 and Cp.
A detailed investigation of these effects is an appropriate
subject for future studies.
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IV. CONCLUSIONS AND RECOMMENDATIONS

We have shown here that the present k-c turbulence model
does indeed predict the rapid growth of turbulence in the
vicinity of the contact surface for HE-driven blast waves.
Parametric studies should be performed with this model to
pin down the constants, especially C3 and CP. Such kinematic
calculations should be verified with experimental data. In
addition, a heat release model should be formulated and
incorporated into the hydrocode. Calculations including such
energetics (i.e., afterburning) should then be performed for
explosives which afterburn more strongly (e.g., TNT and
Pentolite) and more weakly (e.g., PBX-9404), and such calcu-
lations should then be compared with appropriate experimental
data (pressure records, photography and thermal radiation
measurements of the fireball) and inviscid calculations to
determine the importance of afterburning for various types
of explosives.
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